Dataísmo

dados ♥ métricas ♥ monitoramento

Page 2 of 2

Data Strategy | Data Analysis

* Este artigo é a terceira publicação de uma série de posts sobre dados aqui no dataismo. O primeiro foi sobre Meta Dados e o segundo sobre Data Mining. Acompanhe-nos para ver mais sobre mais assuntos relacionados, como o Data Sharing, nas próximas publicações. 😉

 

Depois de cuidar dos dados, o próximo passo estratégico é a chamada “data analysis”, que consiste, assim como o nome mesmo já diz, na análise dos dados. É por meio dela que vamos gerar informação, conhecimento e, por fim, a sabedoria, também chamada de insights. 

Esses conceitos parecem, à primeira vista, a mesma coisa. E é comum confundirmos. Mas, como diria a música…

“Information is not knowledge (informação não é conhecimento)
Knowledge is not wisdom (conhecimento não é sabedoria)
Wisdom is not truth (sabedoria não é a verdade)
Truth is not beauty (verdade não é beleza)
Beauty is not love (beleza não é amor)
Love is not music (amor não é música)
Music is THE BEST (música é o melhor)”

(Frank Zappa)

 

 Para melhorar um pouco, se formos dividir em etapas, encontramos a chamada Pirâmide do Conhecimento, cujo caminho que mostra como os dados viram informação. A pirâmide é representada pelo DIKW, Data-Information-Knowledge-Wisdow, baseado no modelo cartesiano (criado com base nos princípios do filósofo Descartes), que consiste em uma evolução de [d]ata (dados), [in]formation (informação), [k]nowledge (conhecimento) e [w]isdom (sabedoria). Esse modelo, hoje em dia, é utilizado para várias áreas, que incluem pesquisas em tecnologia da informação até o marketing:

Pirâmide do Conhecimento ou DIKW

Pirâmide do Conhecimento ou DIKW

Dados ➳ elementos

Sinais, símbolos, um aglomerado de números sem significados. É aquilo que foi coletado.

Exemplo: dados brutos em um arquivo de Excel, o formato, a data, a hora, o tempo da coleta.

 

Informação ➳ organização

Informações são os dados estruturados.

Exemplo: um Excel com dados tabulados, divididos por categorias de sentimento, tags do monitoramento e por rede social.

 

Conhecimento ➳ contexto

Surge quando a informação ganha uso e significado, é sintetizado e pode ser aprendido.

Exemplo: gráficos que dividem estas informações de sentimento e as tags por tipo, cor, formato… representam um crescimento ou queda e dividem-se entre barras, gráficos de pizza para mostrar a representatividade do assunto, etc.

 

Sabedoria ➳ insights

São os chamados “dados acionáveis”, integrados, organizados e explicados e, o mais importante, trazem um aprendizado válido para aplicação e são entendidos pelas pessoas que têm acesso a essas informações.

Exemplo: os dados de sentimento e as tags indicam que a marca está melhor do que no mês passado. Porém, quando comparada ao mercado, está abaixo do esperado pelos fornecedores por apresentar menor aprovação que a concorrência e receber menos citações do que o esperado.

 

Para um analista de métricas, business intelligence, monitoramento e afins, o caminho para transformar os dados em informação e, posteriormente criar ações embasadas, é fundamental. Mas isso também vale para profissionais que lidam com estatísticas, como pesquisadores. Para obter algum insight, é necessário ver a sua amostra, o que ela diz. E é interessante ir além, focando não apenas no positivo, mas também na queda e nas alterações ao longo do período. É assim que podemos identificar se algo está bom para o seu padrão (comparando com os próprios resultados) ou está ruim (olhando para fora, seja um outro segmento da pesquisa, um outro assunto ou o mercado).

A análise só produz insights verdadeiros quando possui base, podendo ser argumentada e comprovada. É ao que muitos se referem quando dizem que “números que não mentem”. Na verdade, os números justificam, não é? Mas eles também podem ocultar ou favorecer uma ideia, dependendo do seu objetivo final. Se os resultados não foram tão bons ou a análise não saiu tão boa de primeira, vale a pena ver de novo. E, principalmente, como já disse o Zappa, música é mesmo o que nos resta de melhor. É só tentar entrar no ritmo. 😉
* Continue de olho no dataismo para acompanhar os próximos passos de uma estratégia de dados: Data Sharing. Acompanhe o Twitter e o Facebook para receber novas publicações em primeira mão.

Data Strategy | Data Mining

Data Mining ou mineração de dados

* Este artigo é a segunda publicação de uma série sobre conceitos sobre dados aqui no Dataísmo. O primeiro foi sobre Meta Dados. Acompanhe-nos para ver mais sobre mais assuntos relacionados, como Data Analysis e Data Sharing, nas próximas publicações. 😉

 

📊  Parte 2/3 > Data Mining ou “mineração de dados”

Após a primeira parte da coleta e armazenamento dos dados, é o momento de olhar para o que foi coletado e definir o que irá ou não entrar na pesquisa e/ou na apresentação. O processo de obter os dados e “minerá-los” é comumente chamado de Data mining e seu sentido original refere-se à forma de coleta de grandes dados, que passam pela extração, armazenamento, análise e estatística.

 

📊  Análise quantitativa

É durante o processo de Data Mining que ocorre a análise quantitativa. Este processo pode ser dividido em dois tipos. Um é a observação do “discret data”, com pequenas segmentações, cujo resultado é mais especializado;  o outro tipo é “continuous data”, cuja análise é contínua e os dados analisados tornam-se informação acionável.  É o momento de observar cada número, relevar a sua importância e começar, de fato, a analisar.

O Data Mining é fundamental pois atua no processo quantitativo que vai gerar conhecimento, a chamada análise quantitativa: interpretações e novos caminhos a partir de um aglomerado de números.

A partir daí os dados “saem para o mundo”. E é aí que entra a  performance e o planejamento, o monitoramento e a mensuração; o entendimento da organização de grafos (social network analysis); regras e responsabilidades e, ao final, os relatórios de performance.

Por último, e talvez o maior desafio na produção da análise dos dados, está gerar a inteligência, ou o Business Intelligence. Ele é composto dos goals x objetivos.

 

📊  Aplicação de Data Mining ou mineração de dados

Durante a aplicação de Data Mining, nem todos os dados coletados podem ganhar uma utilização, mas ainda assim fazem parte da pesquisa e são relevantes. Sua aplicação imediata não é o fator mais importante para deletar. Considerando que nem sempre os meios de obter as informações são baratos e muito menos rápidos, isso toma ainda mais importância. Durante a análise é comum que queiramos nos livrar de abas do Excel ou algum dado extra. Mas…

“Os dados armazenados são como as roupas em um armário; mesmo que não acessemos em dois anos, ainda não devemos jogá-los fora – e assim vale a pena lembrar durante formulação uma estratégia de dados”. (Mike Schiff)

 

* Continue de olho no dataismo para ver os próximos passos de uma estratégia de dados: Data Analysis e Data Sharing. Acompanhe o Twitter e o Facebook para receber novas publicações em primeira mão. 🙂

Newer posts »

© 2017 Dataísmo

Theme by Anders NorenUp ↑