Dataísmo

dados | insights | estratégia

Category: Data Strategy (page 2 of 3)

Business Intelligence e ontologia: definições e apontamentos

Não é novidade que, todos os dias, somos sobrecarregados de dados e informações. A transformação em conhecimento e sabedoria são os nossos insights, que consistem na análise do que foi apresentado e quais as oportunidades podem ser obtidas a partir deles. Em outras palavras, o trabalho da análise dos dados consiste na reflexão sobre o que foi obtido (cenário atual) e o que aquilo pode tornar-se (oportunidades, estratégias e busca por objetivos em seu negócio).

Se, por um lado, temos um mundo cada dia mais cheio de informações, por outro, nem sempre temos pessoas especializadas (ou dispostas) a analisar esse tipo de informação. E é aí que entra a importância metodológica e quase filosófica de aplicar a reflexão para saber sobre o que está sendo tratado e o que isso pode significar.

Definição e a essência da ontologia

Quando buscamos a análise, passamos por um período de mensuração, que inclui a classificação, que pode ser: a saúde da marca (se está mais positiva, negativa, apresenta neutralidade); categorias ou tags (palavras que representam temas ou assuntos) e o tipo da audiência para identificar o seu comportamento. Toda esta classificação acaba nos direcionando para vários campos. Um desses caminhos é a ontologia, que significa “o estudo do ser”.  

 

ontologia

substantivo feminino

  1. fil, segundo o aristotelismo, parte da filosofia que tem por objeto o estudo das propriedades mais gerais do ser, apartada da infinidade de determinações que, ao qualificá-lo particularmente, ocultam sua natureza plena e integral.

  2.  fil no heideggerianismo, reflexão a respeito do sentido abrangente do ser, como aquilo que torna possível as múltiplas existências [Opõe-se à tradição metafísica que, em sua orientação teológica, teria transformado o ser em geral num mero ente com atributos divinos.].

 

A ontologia foi bastante abordada pelo filósofo Martin Heidegger, escreve sobre o assunto indo um pouco além das primeiras definições de Aristóteles que consistem nas “classificações e interpretações”. Para Heidegger, existe “aquilo que é” e também “o que pode ser”. As coisas e as possibilidades. Dentro das possibilidades, existem diversos universos que podemos desenhar. O conceitos são filosóficos, mas não tão viajosos, pois eles podem ser aplicados. Se fôssemos resumir, para business intelligence a ontologia é bem prática e corresponde à nossa relação entre o dado (“o que é” e a informação/sabedoria (“o que pode ser”).

 

Aplicações da ontologia

 

A ontologia já é aplicada nas áreas de Tecnologia da Informação, Arquitetura/UX e especialmente em programação. É da base de linguagens como o Java e o CSS. Para alguns, é a tentativa de unir o “real” ao “virtual”, considerando cada dado como objeto e organizando-o para formar a cadeia de códigos. A divisão básica é composta de:

  • Indivíduos são os componentes básicos. Podem ser objetivos concretos ou abstratos. Ele compõe uma classificação de indivíduos.

 

  • Classes referem-se* a:

Um tipo definido pelo usuário que contém a “receita”, a especificação para os objetos, algo mais ou menos como o tipo inteiro contém o molde para as variáveis declaradas como inteiros. A classe envolve, associa, funções e dados, controlando o acesso a estes, defini-la implica em especificar os seus atributos (dados) e seus métodos (funções).

 

  • Toda classe possui um nome;
  • Possuem visibilidade, exemplo: public, private, protected;
  • Possuem membros como: Características e Ações.

 

* Com algumas informações da Fábrica de Software/Senac

 

Ontologia e business intelligence

A associação entre ontologia e business intelligence ainda é recente, mas já conseguimos encontrar alguns trabalhos interessantes sobre o assunto. Quando aplicamos esses conceitos, é importante separar o que se chama daquele conceito de business intelligence baseado nos códigos de programação da mais recente definição: o business intelligence como e criação de insights a partir dos dados.

 

Abordagem administrativa Abordagem tecnológica
Foco no processo de extração e pós coleta dos dados, incluindo processos externos de analisá-las para extrair informações relevantes. Focos no processo tecnológico que faz parte do processo (a ferramenta e o meio, se formos considerar

Com informações de Petrini and Pozzebon, 2003. Petrini and Pozzebon (2003)

 

Aqui, vamos abordar esta segunda definição, baseada na extração e análise de dados (data analysis). A ontologia, para a web, passa por alguns conceitos de semântica ou significado. Acompanhe o nosso próximo post, na quinta-feira, para saber mais sobre Ontologia, modelo semântico e business intelligence.

Potiguar, retirante e dataísta. Marketing Digital com foco em Business Intelligence, estratégia e monitoramento de mídias sociais.

Data Strategy | Data Analysis

* Este artigo é a terceira publicação de uma série de posts sobre dados aqui no dataismo. O primeiro foi sobre Meta Dados e o segundo sobre Data Mining. Acompanhe-nos para ver mais sobre mais assuntos relacionados, como o Data Sharing, nas próximas publicações. 😉

 

Depois de cuidar dos dados, o próximo passo estratégico é a chamada “data analysis”, que consiste, assim como o nome mesmo já diz, na análise dos dados. É por meio dela que vamos gerar informação, conhecimento e, por fim, a sabedoria, também chamada de insights. 

Esses conceitos parecem, à primeira vista, a mesma coisa. E é comum confundirmos. Mas, como diria a música…

“Information is not knowledge (informação não é conhecimento)
Knowledge is not wisdom (conhecimento não é sabedoria)
Wisdom is not truth (sabedoria não é a verdade)
Truth is not beauty (verdade não é beleza)
Beauty is not love (beleza não é amor)
Love is not music (amor não é música)
Music is THE BEST (música é o melhor)”

(Frank Zappa)

 

 Para melhorar um pouco, se formos dividir em etapas, encontramos a chamada Pirâmide do Conhecimento, cujo caminho que mostra como os dados viram informação. A pirâmide é representada pelo DIKW, Data-Information-Knowledge-Wisdow, baseado no modelo cartesiano (criado com base nos princípios do filósofo Descartes), que consiste em uma evolução de [d]ata (dados), [in]formation (informação), [k]nowledge (conhecimento) e [w]isdom (sabedoria). Esse modelo, hoje em dia, é utilizado para várias áreas, que incluem pesquisas em tecnologia da informação até o marketing:

Pirâmide do Conhecimento ou DIKW

Pirâmide do Conhecimento ou DIKW

Dados ➳ elementos

Sinais, símbolos, um aglomerado de números sem significados. É aquilo que foi coletado.

Exemplo: dados brutos em um arquivo de Excel, o formato, a data, a hora, o tempo da coleta.

 

Informação ➳ organização

Informações são os dados estruturados.

Exemplo: um Excel com dados tabulados, divididos por categorias de sentimento, tags do monitoramento e por rede social.

 

Conhecimento ➳ contexto

Surge quando a informação ganha uso e significado, é sintetizado e pode ser aprendido.

Exemplo: gráficos que dividem estas informações de sentimento e as tags por tipo, cor, formato… representam um crescimento ou queda e dividem-se entre barras, gráficos de pizza para mostrar a representatividade do assunto, etc.

 

Sabedoria ➳ insights

São os chamados “dados acionáveis”, integrados, organizados e explicados e, o mais importante, trazem um aprendizado válido para aplicação e são entendidos pelas pessoas que têm acesso a essas informações.

Exemplo: os dados de sentimento e as tags indicam que a marca está melhor do que no mês passado. Porém, quando comparada ao mercado, está abaixo do esperado pelos fornecedores por apresentar menor aprovação que a concorrência e receber menos citações do que o esperado.

 

Para um analista de métricas, business intelligence, monitoramento e afins, o caminho para transformar os dados em informação e, posteriormente criar ações embasadas, é fundamental. Mas isso também vale para profissionais que lidam com estatísticas, como pesquisadores. Para obter algum insight, é necessário ver a sua amostra, o que ela diz. E é interessante ir além, focando não apenas no positivo, mas também na queda e nas alterações ao longo do período. É assim que podemos identificar se algo está bom para o seu padrão (comparando com os próprios resultados) ou está ruim (olhando para fora, seja um outro segmento da pesquisa, um outro assunto ou o mercado).

A análise só produz insights verdadeiros quando possui base, podendo ser argumentada e comprovada. É ao que muitos se referem quando dizem que “números que não mentem”. Na verdade, os números justificam, não é? Mas eles também podem ocultar ou favorecer uma ideia, dependendo do seu objetivo final. Se os resultados não foram tão bons ou a análise não saiu tão boa de primeira, vale a pena ver de novo. E, principalmente, como já disse o Zappa, música é mesmo o que nos resta de melhor. É só tentar entrar no ritmo. 😉
* Continue de olho no dataismo para acompanhar os próximos passos de uma estratégia de dados: Data Sharing. Acompanhe o Twitter e o Facebook para receber novas publicações em primeira mão.

Potiguar, retirante e dataísta. Marketing Digital com foco em Business Intelligence, estratégia e monitoramento de mídias sociais.
Older posts Newer posts

© 2017 Dataísmo

Theme by Anders NorenUp ↑